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Abstract

As biometric data undergo rapidly growing privacy con-
cerns, building large-scale datasets has become more dif-
ficult. Unfortunately, current iris databases are mostly in
small scale, e.g., thousands of iris images from hundreds of
identities. What’s worse, the heterogeneity among decen-
tralized iris datasets hinders the current deep learning (DL)
frameworks from obtaining recognition performance with
robust generalization. It motivates us to leverage the merits
of federated learning (FL) to solve these problems. How-
ever, traditional FL algorithms often employ model sharing
for knowledge transfer, wherein the simple averaging ag-
gregation lacks interpretability, and divergent optimization
directions of clients lead to performance degradation. To
overcome this interference, we propose FedIris with solid
theoretical foundations, which attempts to employ the iris
template as the communication carrier and formulate fed-
erated triplet (Fed-Triplet) for knowledge transfer. Further-
more, the massive heterogeneity among iris datasets may in-
duce negative transfer and unstable optimization. The mod-
ified Wasserstein distance is embedded into the FedTriplet
loss to reweight global aggregation, which drives the clients
with similar data distributions to contribute more mutually.
Extensive experimental results demonstrate that the pro-
posed FedIris outperforms SOLO training1, model-sharing-
based FL training, and even centralized training2.

1. Introduction

Iris is acknowledged to be a dominant biometric trait in
next-generation identification systems. Iris recognition sys-
tems are already deployed in high-security areas such as
access control, check-in inspection, surveillance systems.
Unlike large-scale face datasets with millions of images or

*Yunlong Wang is corresponding author
1Model training on a single dataset.
2Model training on all dataset superimposed together.

Figure 1. The goal of FedTriplet loss is that the local representa-
tions are learned to be more separate from inter-class samples and
closer to intra-class samples, with the introduction of cross-client
negative samples in latent space. Anchor and positive samples are
from the same ID, negative samples are from other IDs but the
same client, and the cross-client negative samples are from out-of-
distribution IDs and other clients.

even identities (IDs) [1], publicly available iris datasets are
in much smaller scale. For instance, the latest CASIA se-
ries iris dataset [2] only consists of 36,539 images from
255 subjects. In addition, privacy protection regulations
over the world are constantly tightening, and privacy attacks
are evolving. Some big datasets, e.g., MS-Celeb-1M [3],
are no longer available for public use. Hence, the tradi-
tional solution becomes nearly impossible, which collects
and piles up large-scale data to train a centralized iris recog-
nition framework. Meanwhile, the popular deep neural net-
work (DNN) based iris recognition models are data-hungry.
Abundant data are necessities for discriminative represen-
tation learning. The massive heterogeneity among current
small-sized iris datasets as “data islands” further impedes
centralized training. To this end, a potential solution is Fed-
erated Learning (FL) [4], which provides a decentralized
learning paradigm without direct access to local raw data,
but can transfer the knowledge through model sharing. For
instance, FedSGD [4] updates the global parameter with the
average aggregation of multiple clients’ local gradients. De-



spite its great success, the recent attack methods [5] proved
that raw images can be faithfully reconstructed at high res-
olution using the received gradients from other clients. The
privacy guarantee of model-sharing-based FL is moderately
broken.

Iris templates are encoded as highly abstract represen-
tations of raw iris images. They are insensitive to personal
privacy and non-reusable when the feature extraction model
changes. Even if the templates are leaked, it is non-trivial to
reconstruct raw iris data or recognize the identity. Thus, iris
templates can be employed as the knowledge carrier for FL
communication. As far as we know, this work is the first to
apply FL-inspired strategy into iris recognition by adopting
federated template communication.

The purpose of joint training in distributed FL systems
is to communicate the knowledge through client aggrega-
tion [4]. The federated template communication can inher-
ently introduce additional constraints for the error bound of
the local clients [6]. In addition, the robustness and gener-
alization of the local model can be enhanced with the in-
troduction of diverse templates from other clients. We pro-
vide solid theoretical foundations to support these hypothe-
ses. More specifically, aggregated averaging empirical risk
minimization (ERM) is the primary optimization strategy
of model-sharing-based FL algorithms. Although the con-
vergence guarantee is proved [7], this simple averaging ag-
gregation still lacks interpretability in FL settings, and the
performance suffers from heterogeneous distributions due
to divergent optimization directions of clients. Inspired by
metric learning [8], Fed-Triplet loss is proposed, as updat-
ing from the version of the local triplet loss function, for
cross-client template communication. The foundation of
this training strategy is that the representations share a simi-
lar training assumption in most computer vision (CV) tasks,
i.e., these vectors are learned to be intra-class proximity and
inter-class separation in latent space. Fig. 1 shows the goal
of Fed-Triplet loss with the introduction of cross-client neg-
ative template samples. The effectiveness lies in that: 1)
the discriminability of the local template is enhanced due to
inter-class distance expanding; 2) the robustness and gen-
eralization ability are significantly improved due to tighter
intra-class distribution.

The widely adopted iris datasets exhibit the character-
istics of small scale, diverse collecting environments, and
subject variations. These huge distribution shifts also refer
to data heterogeneity. Data heterogeneity in decentralized
datasets destroys the basic independent and identically dis-
tributed (i.i.d.) assumption. Under distributed FL setting,
this heterogeneity between clients induces sub-optimal or
detrimental performance when testing on each client’s local
data, a.k.a. negative transfer. The underlying reason is that
the divergent optimization directions of client models [9],
which leads task-decision models to be unstable and even

non-convergent. To mitigate this problem, many reweight-
ing strategies are proposed to measure the similarity of data
distribution implicitly. For example, [10] calculated the in-
fluence level from other clients’ models. The FedAMP [11]
employed the model similarity to facilitate similar clients
to collaborate more. In this paper, as an explicit measure-
ment, the Wasserstein distance [12] is embedded into the
Fed-Triplet loss to reweight the cross-client template sam-
ples in aggregation, which drives the clients with more sim-
ilar distributions to be more contributive.

To verify the proposed framework, extensive exper-
iments are conducted on multiple commonly adopted
iris datasets. It demonstrates that FedIris outperforms
SOLO training, model-sharing-based FL training (classic
FedSGD [4]3), and even centralized training. In addition,
the effectiveness of the proposed FedIris to mitigate the neg-
ative transfer is carefully verified. The performance that all
the clients participate in the communication rounds is much
better than FedSDG and only second to the model trained
on the optimal group of communication participators4. To
sum up, the main contributions of the paper are as follows:

• FedIris is proposed as the first attempt of FL applica-
tion to distributed iris recognition.

• Federated template communication transfers knowl-
edge among clients with better interpretability and
solid theoretical foundations.

• Experimental results on decentralized iris datasets
demonstrate the superiority of the proposed FedIris.

2. Related Work
In this section, a review of the literature is provided

mainly on federated learning and its application to biomet-
rics.

2.1. Federated Learning

Federated learning (FL) provides a decentralized learn-
ing paradigm and fulfills privacy protection. Many tech-
niques from other research areas are applied to FL and
achieve great success, such as meta-learning [13, 14], do-
main adaptation [15, 16] , knowledge distillation [17, 18],
multi-task learning [19, 20], etc. However, there are still
many doubts about the security of model sharing. For ex-
ample, Wang et al. [21] discusses the adversarial attacks
in the form of back doors during the training process of
FL. Geiping et al. [5] show that it is possible to faithfully

3FedSGD is one classic FL training method, which can be understood
as FedAvg with one-step local optimization each round.

4The optimal group of communication participators means one possi-
ble subset of participating clients, which achieves the best performance by
joint training in FedIris.



reconstruct raw images at high resolution using the com-
munication of parameter gradients. Hongxu et al. [22] fur-
ther recover the raw data and labels from a large training
batch. Some researchers turn to other communication carri-
ers that can be employed for knowledge transfer. Chang et
al. [23] uploaded the output prediction to the server for im-
proving local personalization. However, these carriers can
not support great performance improvement. FedDG [24]
proposed by Quande et al. exchanged the amplitude spec-
trum of local data across clients to transmit the distribution
knowledge, while keeping the phase spectrum with core se-
mantics locally for privacy protection. FedMix [25] pro-
posed by Tehrim et al. exchanged locally mashed (or av-
eraged) data for reducing a myopic bias. In this work, we
attempt to make full use of iris templates for knowledge
communication in the proposed framework.

2.2. Federated Biometrics

As a brand new research field, a few works have focused
on the application of FL to biometrics, especially the face
modality. For example, FedPAD [26] proposed by Shao et
al. is a presentation attack detection method for face recog-
nition system, which distributedly learned different spoof
types from heterogeneous data distributions. FedFace [27]
is proposed by Aggarwal et al. for collaborative learning of
face recognition models. Meng et al. [28] applied rigorous
differential privacy through the communication of auxiliary
embedding centers for federated face recognition. Niu et
al. [29] proposed FedGC and applied gradient correction
for federated face recognition. FedAffect [30] proposed by
Shome et al. focus on self-supervised few-shot federated
learning for facial expression recognition. To our knowl-
edge, this work is the first to apply FL for iris recognition.

3. Theoretical Foundation and Framework
This section provides the theoretical foundation of feder-

ated template communication and the framework of FedIris
in detail.

3.1. Theoretical Foundation

To ensure the effectiveness of FedIris, some theoreti-
cal foundation must be guaranteed for federated template
communication. Inspired by the theory of domain adap-
tation proved by Ben-David et al. [6], the introduction of
the source domain can provide additional constraints for
the error bound of the target domain. For brevity, we as-
sume that there are only two data clients participating in the
distributed training as source and target. The purpose is to
transfer the knowledge from the source domain to the tar-
get domain through federated template communication. At
first, the generalization errors of source and target domain
are defined for federated template communication in latent
space.

Definition 3.1 The source and target data domain of iris
datasets are defined as IS , IT , and the raw image distribu-
tions are defined as IS ∼ Ds IT ∼ Dt. The template ex-
tractor g maps the raw data X to iris template R in latent
space.

  \begin {aligned} g: X\rightarrow R \end {aligned} \label {eq:labeling function}     (1)

Due to subject variations of various iris dataset collection,
the labels are often cross-domain different. Thus, two indi-
vidual classifiers map the templates to the local predictions
independently for source and target as:

  \begin {aligned} h_{s}: R\rightarrow Y_{s}, R \sim T_{s}\\ h_{t}: R\rightarrow Y_{t}, R \sim T_{t} \end {aligned} \label {eq:labeling function}       

      

(2)

The template distributions of source and target are defined
as Ts, Tt. Besides, Ys and Yt are defined as the identity
labels for the source and target domain. In addition, the
probability measure of template distribution can be defined
as:

  \begin {aligned} Pr_{T}[B]\overset {def}{=}Pr_{D[g^{-1}(B)]} \end {aligned} \label {eq:dstribution} 



(3)

where B is an event in latent space, Pr is the probability
measure. The prediction functions of source domain and
target domain can be defined as:

  \begin {aligned} \widetilde {f}^{s}\overset {def}{=}E_{x\sim D_{s}}\left [ \overline {h_{s}}(g(x))|g(x)=R ,R\sim T_{s}\right ]\\ \widetilde {f}^{t}\overset {def}{=}E_{x\sim D_{t}}\left [ \overline {h_{t}}(g(x))|g(x)=R ,,R\sim T_{t}\right ]\\ \end {aligned} \label {eq:dstribution} 



   


 




    

 (4)

where the hs and ht are the predictors of source and target
domain, which map the templates to local identity labels.
Thus, the generalization error of the source ϵTs and the tar-
get ϵTt

in latent space are defined as:

  \begin {aligned} \epsilon _{T_{s}}\left ( h_{s} \right )=E_{r\sim T_{s}}\left [ E_{y\sim \widetilde {f}^{s}}\left [ y\neq h_{s}(r) \right ] \right ]\\ \epsilon _{T_{t}}\left ( h_{t} \right )=E_{r\sim T_{t}}\left [ E_{y\sim \widetilde {f}^{t}}\left [ y\neq h_{t}(r) \right ] \right ] \end {aligned} \label {eq:generalization_error} 
 


   




 


   

 (5)

A hypothesis class H is a set of functions satisfying
∀hs, ht ∈ H,hs, ht : R → Y .

After definition, the theory of generalization bounds
[31] and optimal transportation [32] are borrowed to support
the generalization error bound of template communication.
Wasserstein Distance is one of the distance measurements
between two distributions p1 and p2 and defined as:

  \begin {aligned} W \left ( p_{1},p_{2} \right )=\underset {\gamma \sim \pi \left ( p_{1},p_{2}\right )}{inf}E_{\left ( x,y \right )\sim \gamma }\left [ \left \| x-y \right \| \right ] \end {aligned} \label {eq:eq14}   


   (6)

Generalization bound: With the same assumptions of a
Reproducing Kernel Hilbert Space in [31] equipped with
kernel 0 ⩽ kl ⩽ K. The concentration inequality [31] is



established, with probability at least 1−δ for all hypotheses
h the following holds:

  \begin {aligned} P\begin {Bmatrix}\left | \widehat {\epsilon } _{T_{s}^{*}}(h) - \epsilon _{T_{s}^{*}}(h)\right |> \\ 2\sqrt {K/n}\left ( \frac {\alpha }{n\beta \sqrt {\beta }}+\frac {1-\alpha }{n(1-\beta )\sqrt {1-\beta }} \right ) +\epsilon \end {Bmatrix}\\ \leqslant exp\left \{ \frac {-\epsilon ^2n}{2K\left ( \frac {(1-\alpha )^2 }{1-\beta }+\frac {\alpha ^2}{\beta } \right )} \right \}\\ \end {aligned} \label {eq:Concentration inequality } 







































 






(7)

where ϵT∗
s
(h) is the empirical combined error and the

ϵT∗
s
(h) is a convex combination of errors on the source and

target templates as:

  \begin {aligned} \epsilon _{T_{s}^{*}}(h)=\alpha \epsilon _{T_{t}}(h)+(1-\alpha )\epsilon _{T_{s}}(h) \end {aligned} \label {eq:combination_error} 

      (8)

With the introduction of source templates, additional
constraints are provided to the generalization error bound
of the target domain.

Theorem 3.2 Generalization error bound with best hy-
pothesis: If ĥ is the minimization of ϵT∗

s
(h) and h∗

Tt
=

min
h

ϵTt
(h) then for any δ ∈ (0, 1) with probability at least

1− δ in latent space:

  \begin {aligned} \epsilon _{T_{t}}\left ( \widehat {h} \right )\leqslant \epsilon _{T_{t}}\left (h_{T_{t}}^{*} \right )+2(1-\alpha )\left ( W(T_{s},T_{t})+\lambda \right )+\theta \end {aligned} \label {eq:Generalization_error_bound} 

 






        

(9)
where

  \begin {aligned} \lambda &=\underset {h}{min}\epsilon _{T_{t}}(h)+\epsilon _{T_{s}}(h)\\ \theta &=2\sqrt {2K\left ( \frac {\left ( 1-\alpha \right )^2}{1-\beta }+\frac {\alpha ^2}{\beta }log(2/\delta ) \right )/n}\\&+4\sqrt {K/n}\left ( \frac {\alpha }{n\beta \sqrt {\beta }}+\frac {1-\alpha }{n(1-\beta )\sqrt {1-\beta }} \right ) \end {aligned} \label {eq:Generalization_error_bound_definition} 



 



 






































 (10)

Theorem 3.2 provides the effectiveness proof of feder-
ated template communication. The generalization error of
the target domain, with the introduction of source templates,
performs better than the best hypothesis of training only on
the target templates. At least, the generalization error with
the best hypothesis of mixed templates from source and tar-
get domain is no larger than the error of the best hypothesis
using the target templates alone.

In addition, more constraints can be added to this target
generalization error bounds by the introduction of multi-
source templates, which is based on the principle of The-
orem 4 derived in [33] as:  \begin {aligned} \left | \epsilon _{T_{s}^{*}}(h)- \epsilon _{T_{t}}(h)\right |\leqslant \underset {i\in [N]}{\sum }\alpha _{i}\left ( W(T_{s_{i}},T_{t}) +\lambda _{i}\right ) \end {aligned} \label {eq:proof3} 





 



       (11)

where the convex combination of errors alters with the in-
troduction of multi-source representations as:

  \begin {aligned} \epsilon _{T_{s}^{*}}(h)=\underset {i\in [N]}{\sum }\alpha _{i}\epsilon _{T_{s_{i}}}(h) \end {aligned} \label {eq:proof3} 







 (12)

and
  \begin {aligned} \lambda _{i}=\underset {h}{min}\epsilon _{T_{s_{i}}}(h) &+\epsilon _{T_{t}}(h)\\ \underset {i\in [N]}{\sum }\alpha _{i}&=1 \end {aligned} \label {eq:proof3}  




 




 
(13)

Thus, the generalization error bound of target domain, in
the best hypothesis with multi-source templates introduc-
tion, can be proved as:

Theorem 3.3 Generalization error bound with multi-
source templates introduction: If h∗

s is the minimization
of ϵT∗

s
(h) =

∑
i∈[N ]

αiϵTsi
(h) and h∗

Tt
= min

h
ϵTt

(h). For

any δ ∈ (0, 1) with probability at least 1−δ in latent space:

  \begin {aligned} \epsilon _{T_{t}}\left ( h_{s}^{*} \right )\leqslant \epsilon _{T_{t}}\left ( h_{T_{t}}^{*} \right )+2\underset {i\in [N]}{\sum }\alpha _{i}(W(T_{s_{i}},T_{t})+\lambda _{i})+\theta ' \end {aligned} \label {eq:multi-domainGeneralization_error_bound} 


 











      

(14)
where

  \begin {aligned} \lambda _{i}&=\underset {h}{min}\epsilon _{T_{s_{i}}}(h)+\epsilon _{T_{t}}(h)\\ \theta '&=2\sqrt {2K\underset {i\in [N]}{\sum }\alpha _{i}^{2}log(2/\delta )/\beta _{i}n}+2\sqrt {\underset {i\in [N]}{\sum }K\alpha _{i}/\beta _{i}n} \end {aligned} \label {eq:multi-domainGeneralization_error_bound_definition}  



 

 








 






(15)

Theorem 3.2 and Theorem 3.3 provide the foundations
of the generalization error bound of the target with the best
hypothesis. More generally, inspired by the weighted error
bound for federated domain adaptation [15], the generaliza-
tion error bound of the target domain with any hypothesis
can be proved as:

Theorem 3.4 Generalization error bound in any hy-
pothesis: If hsi is the hypothesis of source domain Tsi in
latent space:

  \begin {aligned} \epsilon _{T_{t}}(h)\leqslant \epsilon _{T_{s}^{*}}(\underset {i\in [N]}{\sum }\alpha _{i}h_{s_{i}})+\underset {i\in [N]}{\sum }\alpha _{i}\left ( W(T_{s_{i}},T_{t}) +\lambda _i \right ) \end {aligned} \label {eq:any_hypothesis_multi-domainGeneralization_error_bound} 
 










     

(16)

Theorem 3.4 represents the dominant factors of target
generalization error bound. If the hypothesis space is fixed,
this bound depends on two items: 1) the generalization er-
ror of the multi-source templates mixture; 2) the distribution
distances between multi-source domains and the target do-
main. This theoretical analysis explains why huge distribu-
tion shifts between clients hinder the model generalization,
which even cause negative transfer. So the simple averaging
aggregation is abandoned in this work, and the distribution
distance is taken into consideration for global aggregation.

With regard to simple averaging aggregation, the weight
is defined as the ratio of the data scale.

  \begin {aligned} \alpha _{i}=\frac {n_{i}}{\tilde {N}},\tilde {N}= \underset {i\in [N]}{\sum }n_{i} \end {aligned} 



 




 (17)



By contrast, the distribution distance is introduced to the
proposed FedIris and this aggregation weight is defined as:

  \begin {aligned} \alpha _{i}=\frac {n_{i}}{W(T_{s_{i}},T_{t}) \underset {i\in [N]}{\sum }\frac {n_{i}}{W(T_{s_{i}},T_{t})}} \end {aligned} 


  









(18)

In this setting, the target generalization error bound depends
only on the best hypothesis of multi-source reweighting
templates mixture.

Algorithm 1 FedIris: federated template communication
Input: Participating clients number N ; The template extractor

of each client fi (∗), and the parameterθi; Communication
rounds γ; Local learning rate η;

Output: Each client’s iris template extractors after joint training
in the setting of FedIris f∗

i (∗);
1: The initialization of each client’s extractors.
2: for k ∈ {1, 2, ..., γ} epoch do
3: for i ∈ {1, 2, ..., N} clients do
4: The clients i: Local templates are extracted from local

iris raw data by local extractor fi (∗).
5: The template center means the averaging of templates

with the same identity, as Ci
k, k ∈ [ni].

6: Templates and centers are sent to the server.
7: end for
8: The server: The calculation of reweighting Fed-Triplet

loss, which details in the Algorithm 2.
9: for i ∈ {1, 2, ..., N} do

10: for j ∈ {1, 2, 3...E} do
The clients i: the loss is received correspond-
ingly by clients to update the local extractor as:
θji = θj−1

i − η▽
θ
j−1
i

Li
tc.

11: end for
12: end for
13: end for
14: The f∗

i (∗) = fi(∗)

Algorithm 2 Server: reweighting Fed-Triplet loss

1: for i ∈ {1, 2, ..., N} clients do
2: Positive template pair is selected as ⟨F a

i , F
p
i ⟩

3: for j ∈ {1, 2, ..., N} , j ̸= iclients do
4: Reweighting weight calculation Wji =

√
nj

ni

1
W (Pj ,Pi)

5: Cross-domain negative template is select as Fn
j , Lji =

LFL(F
a
i , F

p
i , F

n
j )

6: end for
7: The final loss each client i is formed by adding cross-

domain Reweighting Fed-Triplet loss and local triplet loss,
as L =

∑
j∈[N ],j ̸=i

WjiLji + Ltriplet.

8: Then, this loss is sent to the client i for local updating.
9: end for

3.2. Framework

Federated triplet loss: Although the section 3.1 pro-

vides the effectiveness guarantee of iris template commu-
nication. How to communicate the local knowledge such
as discriminability of extractors, distribution patterns, and
template diversity is still a problem. In traditional model-
sharing-based FL methods, averaging empirical risk mini-
mization (ERM) is widely applied as the optimization direc-
tion. However, it is recently proved that the model general-
ization greatly suffers from the clients’ distribution shifts if
optimized by ERM. Inspired by Triplet loss [8], as a classic
metric-learning technique, this loss function aims to mini-
mize the intra-class distances and maximize the inter-class
distances in latent space. Similarly, this training strategy
is shared among the clients and Fed-Triplet loss is pro-
posed for federated template communication with better in-
terpretability. The Fed-Triplet loss is defined as:

  \begin {aligned} L_{FT}&=max (\left \| f_{i}\left ( x_{i}^{a} \right )-f_{i}\left ( x_{i}^{p} \right ) \right \|_{2}^{2}\\- &\left \|f_{i}\left ( x_{i}^{a} \right )-f_{j}\left ( x_{j}^{n} \right ) \right \|_{2}^{2}+margin,0) \end {aligned} \label {eq:eq12}   
  










 








(19)

where
〈
fi (x

a
i ) , fi (x

p
i ) , fj

(
xn
j

)〉
, i, j ∈ [N ] , i ̸= j

represents that one Fed-Triplet selected two templates from
one client i with the same identity, and one template from
other clients with out-of-distribution identity. The margin
is introduced to separate the positive pair from the negative
by a distance. As the visualization of the principle of Fed-
Triplet in Fig. 1, with the insertion of enough cross-domain
negative templates, the local inner-class boundary is tight-
ened and the inter-class distance is enlarged. The former en-
hance the robustness of model generalization, and the later
enhances the distinguishability of local identities.

Distribution similarity aggregation: In addition to the
distribution knowledge transferred by template communi-
cation, the reweighting aggregation is another key point
of this work to achieve a lower target generalization er-
ror bound. The modified Wasserstein distance normalized
by the dataset scale is incorporated into FedTriplet loss
to reweight the heterogeneous distributions. The specific
reweighting matrix is defined as:

  \small \begin {aligned} &W=\\ &\begin {bmatrix} 1 & \sqrt {\frac {n_{1}}{n_{2}}} \frac {1}{W(P_{1},P_{2})} & ...&\sqrt {\frac {n_{1}}{n_{N}}} \frac {1}{W(P_{1},P_{N})}\\ \sqrt {\frac {n_{2}}{n_{1}}}\frac {1}{W(P_{2},P_{1})} & 1 & ...& \sqrt {\frac {n_{N}}{n_{2}}}\frac {1}{W(P_{2},P_{N})}\\ ...& ...& ...& ...\\ \sqrt {\frac {n_{N}}{n_{1}}}\frac {1}{W(P_{N},P_{1})} & \sqrt {\frac {n_{N}}{n_{2}}}\frac {1}{W(P_{N},P_{2})} & ... & 1 \end {bmatrix} \end {aligned} \label {eq:eq16} 
















 














 

  




 






 




(20)

where ni represents the templates number of client i.
Pi presents the template distribution of the i − th
dataset. W (Pi, Pj) represents the Earth Mover’s Distance
(EMD) [12] between clients i and j. Besides, the off-
diagonal elements of the weight matrix is set to 1. After
that, the weight matrix is normalized by the ni

nj
to balance

scale imbalance between clients. This reweighting aggrega-



Figure 2. The overall framework of FedIris. FedIris fulfills federated template communication, Fed-Triplet loss and Wasserstein reweight-
ing.

tion drives the clients with more similar template distribu-
tions to contribute more mutually.

Framework formulation: Fig. 2 shows the overall
framework of the proposed FedIris, which employed the
template-communication-based FL. The overall training
process is expressed as Algorithm 1. The calculation of
reweighting Fed-Triplet loss for each client is expressed as
Algorithm 2 in the global server.

4. Experiments
In this section, we introduce the details of the datasets

and experiments.

4.1. Dataset

The publicly available iris datasets are of severe hetero-
geneity and small scale, which are reasonable for validat-
ing the proposed framework FedIris. The CASIA lamp
(LA) [34], CASIA thousand (TH) [35], CASIA irisV4
(CA) 5, CSIR (CS) [36], ICE (IC) [37] are adopted in the
recognition experiments. The adopted datasets are collected
for iris recognition, but have distinctive attributes in nature.
There are complex differences between these datasets. For
example, CASIA Lamp and CASIA irisV4 were collected
under different illumination; CASIA Lamp and ICE have
distinct differences in image quality and blur degree; ICE
and CASIA irisV4 have huge scale inbalances. Note that
there is no overlap of subjects between the partition of the
training set and the testing set in each client, where the de-
tails of these iris datasets are shown in Fig. 3 (a). All sam-
ples are proceeded with the same preprocessing methods
as [38], including detection, segmentation, and normaliza-
tion.The Equal Error Rate (EER) is widely used as the met-
ric to evaluate the performance of iris recognition. The for-
mula is as follows:

5Portions of the research in this paper use the CASIA-IrisV4 collected
by the Chinese Academy of Sciences, Institute of Automation (CASIA)

  \footnotesize \begin {aligned} FAR=\frac {N_{FA}}{N_{IRA}}*100\%\\ FRR=\frac {N_{FR}}{N_{GRA}}*100\% \end {aligned} \label {eq:eq24} 











(21)

where NFA is the number of false acceptances, NIRA is
the number of impostor pairs, NFR is the number of false
rejections, and NGRA is the number of genuine pairs. EER
is the working point where FAR equals to FRR.

4.2. Iris Recognition Experiments

The iris template extractor in these experiments is the
DNN-based UniNet [39] using MindSpore [40] framework.
The final recognition results are calculated by the similari-
ties measured by Hamming distance, which is widely used
in iris recognition.

Heterogeneity influence: A group of experiments is
conducted to verify the influence caused by the introduc-
tion of heterogeneous iris samples. All the possible groups
of communication participators are verified. In this part,
only Fed-Triplet loss is applied for federated template com-
munication. The EERs are compared with the results of the
models trained by centralized learning or FedSGD [4].

Effectiveness: To verify the effectiveness of the feder-
ated template communication in the proposed Fed-Triplet
loss function, the results are compared under the follow-
ing four training settings. 1) Five UniNets are initialized
randomly and trained on the respective iris training set,
which is named SOLO. 2) One UniNet is initialized ran-
domly and trained on five training sets aggregated together
into a centralized one, called Centralized. 3) Five UniNets
are initialized randomly and trained by FedSGD [4]. 4) Five
UniNets are trained by federated template communication
along with the Fed-Triplet loss function. No reweighting
aggregation is used here.

Ablation: The proposed FedIris trained with or with-
out Fed-triplet and reweighting aggregation is validated,



Figure 3. The (a) shows the detail of iris datasets. The (b) (f) shows the EERs of the UniNets trained by FedIris with only Fed-Triplet
loss function under different number of iris dataset participators. These curves verify that the common sense that more data brings better
performance is not always correct and present the severe interference caused by distribution shifts between iris datasets.

which aims to verify the effectiveness and complementar-
ity of these two proposed strategies.

Asynchronous factors: Considering that the asyn-
chronous conditions often occur due to the differences in
computing and communication capabilities of each client.
The auxiliary experiment aims to represent the degree of
performance degradation under asynchronous conditions.
First, five UniNets are trained in the manner of SOLO on
the corresponding iris dataset. Then, only one randomly se-
lected client is trained continuously through federated tem-
plate communication by fixing the parameters of the re-
maining four networks.

Cross-client verification: Cross-client verification is
to verify the personalization of each extractor trained by
FedIris. To be more concrete, the extractors from one client
test on the cross-client dataset may obtain varying perfor-
mances.

4.3. Results and Analysis

In this section, we show the results and analysis of the
iris recognition experiments.

Heterogeneity influence analysis: The performances of
FedIris under different groups of communication participa-
tors are shown in Fig. 3. The following conclusions are
obtained by analyzing the results: 1) The distribution shifts
between the communication participators may cause neg-
ative transfer for EER performances. It is unreasonable to
train the model on aggregating more datasets while ignoring
distribution shifts. 2) The EERs of the UniNet trained on
the optimal group of communication participators are even
better than centralized training. It indicates that the het-

Table 1. The LA, TH, IC, CS, and CA represent the abbrevi-
ations of the datasets, respectively. “Fed-Triplet” means only
applied Fed-Triplet loss function. “FedIris Asnc” denotes train-
ing in the asynchronous condition. “FedIris All” means the per-
formance that all the clients participate in the communication.
“FedIris Best” implies the theoretically optimal performance as
the best optimal group of communication participators can not be
known before testing in practice. It can be seen that “FedIris All”
achieves superior performance and is only slightly inferior to
“FedIris Best”.

Methods LA TH IC CS CA
SOLO 18.95 11.92 1.96 6.52 4.60

Centralized 7.69 1.91 3.63 9.17 3.34
FedSGD 6.18 3.37 7.94 13.37 3.95

FedTriplet 11.08 4.26 1.95 8.31 3.91
FedIris Asyn 7.94 1.72 2.47 7.54 2.81
FedIris All 6.13 1.67 1.79 7.01 2.17
FedIris Best 6.06 1.41 1.91 6.41 1.54

erogeneity in the centralized datasets may have a negative
effect on performance improvement. 3) The influences of
different source templates’ introduction on the performance
are not equal due to the imbalance of the scale and qual-
ity. For example, the participation of CASIA series datasets
benefits Lamp and harms ICE.

Effectiveness analysis: The results are shown in the
Tab. 1. The results of the UniNet trained by FedSGD or
FedTriplet are close to the results of centralized training,
which are much better than SOLO training. It verifies the



Figure 4. The figure shows the template distributions of CASIA Thousand [35] dataset. The models are trained by SOLO, FedSGD, and
FedIris.

Table 2. Cross-client verification results. EERs are varying on
cross-client testing sets. It shows that FedIris can improve the per-
sonalization of each client.

FedIris LA TH IC CS CA
LA 11.08 5.07 5.06 5.06 6.79
TH 6.89 4.26 9.86 14.12 4.83
IC 4.72 0.96 1.95 6.36 3.94
CS 6.50 1.79 2.55 8.31 2.00
CA 15.14 7.75 10.24 16.53 3.91

competitiveness of federated template communication. In-
terestingly, the EERs on CSIR indicate that the final perfor-
mance of aggregating more data cannot constantly improve.
In other words, the introduction of datasets with huge dis-
tribution shifts is useless or even harmful.

Ablation study: The results of ablation experiments are
tabulated in Tab. 1. FedIris All means that all the clients
participate in the communication rounds. The EER per-
formances of FedIris All are much better than Fed-Triplet.
Fed-Triplet removes the reweighting aggregation in the pro-
posed FedIris. It is proven that the reweighting aggregation
significantly mitigates the negative transfer caused by dis-
tribution shifts. In addition, FedIris Best implies the best
performance achieved by the optimal group of communica-
tion participators. However, such selections of communi-
cation participators can not be known beforehand in prac-
tice. On the other hand, it can be seen that FedIris All
achieves superior performance and is only slightly inferior
to FedIris Best. In contrast to FedIris Best, FedIris All is
more practical and can be applied in real-world scenarios.

To visualize the distinguishability of templates in latent
space, Fig. 4 depicts distributions under different training
methods such as SOLO, FedSGD, and FedIris through T-
SNE techniques. It is demonstrated that FedIris success-
fully reduces intra-class variance and tightens the intra-class
distribution when compared with SOLO and FedSGD train-
ing.

Auxiliary analysis: FedIris Asnc in Tab. 1 denotes train-

ing in the asynchronous condition. The EER performances
only show a slight drop compared with FedIris All, which
are obviously better than training on centralized datasets.
It manifests the potential to transfer the recognition abil-
ity by federated template communication, even under asyn-
chronous or less cooperative situations.

Cross-client verification analysis: The results are
shown in Tab. 2. Compared with model sharing, FedIris
provided personalized model parameters for each client.
Counter-intuitively, the local extractor is sometimes inferior
to cross-client extractors when testing on its own dataset.
The underlying reason may be that some inequities among
certain clients are introduced by the proposed federated
template communication.

5. Conclusions

This work is the first attempt to propose an FL-inspired
framework for iris recognition, which is named FedIris. To
make full use of the characteristics of iris, federated tem-
plate communication is proposed for knowledge transfer.
The effectiveness of federated template communication is
proved with solid theoretical foundations. The optimiza-
tion strategy is updated from typical averaging ERM to Fed-
Triplet loss minimization, which has better interpretability.
To mitigate the negative transfer caused by huge distribution
shifts among the participating clients, the reweighting ag-
gregation based on Wasserstein distance is incorporated into
Fed-Triplet loss, driving the clients with similar template
distribution to mutually learn more from each other. Exten-
sive experiments verify that the proposed FedIris surpasses
model-sharing FL methods, or even centralized learning in
some situations.
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