

Sclera-TransFuse: Fusing Swin Transformer and CNN for Accurate Sclera Segmentation

Haiqing Li^{1,}, Caiyong Wang^{1,}, Guangzhe Zhao¹, Zhaofeng He², Yunlong Wang³, Zhenan Sun³ ¹Beijing Key Laboratory of Robot Bionics and Function Research, Beijing University of Civil Engineering and Architecture, Beijing, P.R. China ²Beijing University of Posts and Telecommunications, Beijing, P.R. China ³CRIPAC, MAIS, CASIA, Beijing, P.R. China

INTRODUCTION

Challenge

1. Sclera images captured in nonconstrained environments often suffer from various noise such as blur, occlusions, illumination variations, specular reflections and gaze deviation

THE PROPOSED METHOD

2. Due to the limited range of receptive fields, CNNs are difficult to effectively model global semantic relevance and thus robustly resist noise interference 3. Lack of diversity in sclera datasets

Goal

Enjoy the benefits of both CNNs and vision transformer in the feature extraction to achieve more accurate and complete sclera segmentation.

Method

1. The encoder integrates CNNs and Transformer in parallel to simultaneously extract local detail features and model the long-range spatial dependence

The overall architecture of Sclera-TransFuse model

2. A Cross-Domain Fusion (CDF) module is designed to efficiently fuse multi-scale features from CNNs and Transformer through information interaction and self-attention mechanism

3. Deep supervision strategies are employed to learn intermediate feature representations better and faster

Output

Cross-Domain Fusion (CDF) module

The overall architecture of CDF model

The details of CDF model

 $t_i^0 = \operatorname{GAP}(t_i), c_i^0 = \operatorname{GAP}(c_i),$

- $t_i^1 = \operatorname{Concat}(t_i, c_i^0), c_i^1 = \operatorname{Concat}(c_i, t_i^0),$
- $t_i^2 = \operatorname{Swin}(t_i^1), c_i^2 = \operatorname{Swin}(c_i^1),$
- $t_i^3 = \operatorname{Reshape}(t_i^2), c_i^3 = \operatorname{Reshape}(c_i^2),$
- $y_i = \operatorname{Conv}(\operatorname{Concat}(t_i^3, c_i^3)),$
- $x_i = \text{Sigmoid}(\text{MLP}(\text{GAP}(t_i))) \otimes t_i,$
- $z_i = \text{Sigmoid}(\text{Conv}(\text{GAP}_c(c_i) \oplus \text{GMP}_c(c_i))) \otimes c_i,$

$\mathcal{L}_{overall} = \lambda_1 \mathcal{L}_1 + \lambda_2 \mathcal{L}_2 + \lambda_3 \mathcal{L}_3 + \lambda_4 \mathcal{L}_4$ $= \lambda_1 l(G, m_1) + \lambda_2 l(G, m_2)$ $+\lambda_3 l(G,m_3) + \lambda_4 l(G,m_4),$

$l(G,m) = \mathcal{L}_{IoU}(G,m) + \mathcal{L}_{bce}(G,m),$

EXPERIMENTS

Comparisons to State-Of-The-Arts

Training dataset	Testing dataset	Method	P(%) ↑	R(%) ↑	F1(%) ↑	IOU(%) ↑
	UBIRIS.v2	U-Net [20]	91.53(04.96)	90.48(06.58)	90.95(03.16)	83.12(07.90)
		nn-UNet [13]	91.78(02.66)	91.23(04.75)	91.43(02.99)	85.96(02.40)
UBIRIS.v2		ScleraSegNet(SSBC) [25]	91.94(07.27)	91.22(06.86)	91.28(05.56)	84.33(07.38)
		ScleraSegNet(CBAM) [25]	91.74(07.44)	91.24(07.26)	91.20(05.76)	84.21(07.63)
		Sclera-TransFuse	94.45(03.52)	94.47(02.60)	94.53(01.97)	89.69(02.45)
	MICHE-I	U-Net [20]	90.60(05.98)	86.05(09.67)	87.83(06.56)	78.85(09.30)
		Sclera-Net [18]	91.88(04.23)	94.69(04.76)	93.13(03.93)	-
MICHE I		nn-UNet [13]	90.87(03.44)	89.05(04.80)	90.41(04.96)	85.22(03.64)
МІСПЕ-І		ScleraSegNet(SSBC) [25]	89.31(06.12)	90.69(07.34)	89.69(04.88)	81.63(07.49)
		ScleraSegNet(CBAM) [25]	91.71(05.42)	88.11(08.26)	89.54(05.37)	81.45(08.03)
		Sclera-TransFuse	92.11(03.95)	95.69(01.94)	93.80(02.22)	88.41(03.81)
	SBVPI	U-Net [20]	95.66(02.54)	95.18(04.82)	95.32(02.71)	91.18(04.63)
		Sclera-Net [18]	94.40(03.28)	98.17(01.60)	96.24(01.71)	-
CDVDI		nn-UNet [13]	96.87(02.96)	95.12(04.31)	95.67(03.39)	93.88(02.97)
SBVPI		ScleraSegNet(SSBC) [25]	95.39(02.70)	95.86(04.52)	95.53(02.57)	91.55(04.42)
		ScleraSegNet(CBAM) [25]	95.62(02.46)	95.39(04.83)	95.41(02.68)	91.33(04.58)
		Sclera-TransFuse	96.59(01.98)	96.82(03.33)	96.66(02.00)	93.59(02.85)
	MOBIUS	U-Net [20]	95.05(04.69)	70.64(06.87)	80.48(04.30)	77.34(04.66)
		nn-UNet [13]	95.27(03.44)	73.89(06.10)	82.13(04.97)	78.55(05.32)
MASD+SMD		ScleraSegNet(SSBC) [25]	93.25(06.94)	73.80(05.33)	82.39(07.04)	81.23(06.63)
		UNet-P [22]	90.90(04.00)	83.10(03.00)	86.80(03.00)	86.80(03.00)
		Sclera-TransFuse	89.07(10.04)	86.23(06.81)	87.79(07.08)	85.51(10.52)

Visualized results

Deep supervision

1. A novel two-stream encoder-decoder model and A novel Cross-Domain Fusion (CDF) module.

2. New performance of intra-dataset and cross-dataset evaluation settings on six common sclera segmentation datasets.

3. Greater robustness and accuracy than previous methods

indicates that the value is not available in literature

Ablation Studies

Method	P(%) ↑	R(%) ↑	F1(%) ↑	IOU(%) ↑		
Sclera-TransFuse	94.45(03.52)	94.47(02.60)	94.53(01.97)	89.69(02.45)		
-ResNet-34 (encoder)	92.74(04.22)	93.70(02.15)	92.84(02.35)	86.72(04.09)		
-Swin Transformer (encoder)	92.52(07.35)	93.61(04.86)	92.71(03.98)	86.89(06.40)		
\triangle Concat+CNN (CDF)	92.23(04.42)	94.10(02.50)	93.16(02.24)	87.64(04.66)		
- CAB (CDF)	94.98(04.31)	93.37(02.02)	94.16(02.32)	88.79(04.15)		
- SAB (CDF)	94.40(04.36)	93.56(03.25)	93.98(02.05)	88.03(03.96)		
- CAB+SAB (CDF)	92.99(04.83)	94.18(02.06)	93.58(02.30)	87.83(04.58)		

denotes removing certain block denotes replacing certain block

Influence of encoder and CDF

Influence of deep supervision

96.63(02.87) 96.54(04.06) 96.56(02.86) 92.91(03.11

42					
	(>				
			0	0	
	< >				
	◄ ▲				
(a)	(b)	(c)	(d)	(e)	(f)

Sclera segmentation results of challenging samples. (a) input eye images, (b) ground truth, (f) segmentation results of our Sclera-TransFuse